Fibrillation of Flax and Wheat Straw Cellulose: Effects on Thermal, Morphological, and Viscoelastic Properties of Poly(vinylalcohol)/fibre Composites

نویسندگان

  • Marta Hrabalova
  • Manfred Schwanninger
  • Rupert Wimmer
  • Adriana Gregorova
  • Tanja Zimmermann
  • Norbert Mundigler
چکیده

Nano-fibrillated cellulose was produced from flax and wheat straw cellulose pulps by high pressure disintegration. The reinforcing potential of both disintegrated nano-celluloses in a polyvinyl-alcohol matrix was evaluated. Disintegration of wheat straw was significantly more time and energy consuming. Disintegration did not lead to distinct changes in the degree of polymerization; however, the fibre diameter reduction was more than a hundredfold, creating a nano-fibrillated cellulose network, as shown through field-emission-scanning electron microscopy. Composite films were prepared from polyvinyl alcohol and filled with nano-fibrillated celluloses up to 40% mass fractions. Nano-fibrillated flax showed better dispersion in the polyvinyl alcohol matrix, compared to nano-fibrillated wheat straw. Dynamic mechanical analysis of composites revealed that the glass transition and rubbery region increased more strongly with included flax nano-fibrils. Intermolecular interactions between cellulose fibrils and polyvinyl alcohol matrix were shown through differential scanning calorimetry and attenuated total reflection-Fourier transform infrared spectroscopy. The selection of appropriate raw cellulose material for high pressure disintegration was an indispensable factor for the processing of nano-fibrillated cellulose, which is essential for the functional optimization of products.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemical Modification of Flax Reinforced Polypropylene Composites

This paper presents an experimental study on the static and dynamic mechanical properties of nonwoven based flax fibre reinforced polypropylene composites. The effect of zein modification on flax fibres is also reported. Flax nonwovens were treated with zein coupling agent, which is a protein extracted from corn. Composites were prepared using nonwovens treated with zein solution. The tensile, ...

متن کامل

The effect of wheat straw bleaching on some mechanical properties of wheat straw/LDPE biocomposites

Using biocomposites containing wheat straw (WS) and synthetic polymers like polyethylene (PE) has gained tremendous popularity, but its application in the packaging industry is not substantial. Due to the prevalence of raw WS color which manifests itself in the WS/LDPE biocomposite, the present investigation is dedicated to fabricate a bleached WS/LDPE composite. Thus, raw WS and the pulp of WS...

متن کامل

Effect of Glycerol and Stearic Acid as Plasticizer on Physical Properties of Benzylated Wheat Straw

The wheat straw as abundant lignocellulosic resource was successfully undergone in a benzylation reaction and plasticized with different contents (2.5, 3, 5 and 7 wt. %) of glycerol and stearic acid.The effect of type and concentration of plasticizers on the mechanical, thermomechanical, morphological and water absorption properties of Benzylated Wheat Straw (BWS) was investigated ...

متن کامل

Evaluation of Thermal Decomposition and Antioxidant Activity of Crop Residues and Ionic Liquid Extracted Lignin

Effective use of crop residues as a source material for the production of energy and biochemicals requires a fundamental understanding of its thermal degradation properties and reaction kinetics. Furthermore, identification of applications for lignin and extractives is essential. Thermogravimetric analysis was used to determine the effect of extractives on the thermal decomposition behaviour of...

متن کامل

Biodegradable Nanocomposites from Wheat Straw

We investigate the mechanical and thermal properties of cellulose nanofiber reinforced starch based thermoplastic composites. Cellulose nanofibers were isolated from wheat straw by a chemi-mechanical technique. Their morphology, physicochemical and thermal properties were investigated to examine potential applications as reinforcement fibers in biocomposites. Transmission electron microscopy re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011